Domain and Range
For a function f,
the domain is the set that is valid as input of f.
the range is the set that is the output of f.
egg. ($(\$ 14.1)$
(1) $\frac{\text { function } \sqrt{\sqrt{y-x^{2}}} \sqrt{n}: n \geqslant 0 \quad \sqrt{n}:[0, \infty)}{\sqrt{y-x^{2}}: y \geqslant x^{2}}$

$$
\begin{aligned}
& \sqrt{n}: n \geqslant 0 \quad \sqrt{n}:[0, \infty) \\
& \sqrt{y-x^{2}}: y \geqslant x^{2} \quad \sqrt{y-x^{2}}:[0, \infty)
\end{aligned}
$$

(2).

$$
\begin{array}{lll}
\frac{1}{x y} & \frac{1}{n}: n \neq 0 & \frac{1}{n}: \quad \mathbb{R} \backslash\{0\} \\
\frac{1}{x y}: x y \neq 0 & \frac{1}{x y}: & \mathbb{R} \backslash\{0\}
\end{array}
$$

(3). $\sin x y$ sin n: $n \in \mathbb{R} \quad \sin n:[-1,1]$
$\sin x y: \mathbb{R}^{2} \quad \sin x y:[-1,1]$
(4). $\sqrt{x^{2}+y^{2}+z^{2}}$

$$
\begin{array}{ll}
\sqrt{n}: n \geqslant 0 & \sqrt{n}:[0, \infty) \\
\sqrt{x^{2}\left(y^{2}+y^{2}\right.}: \|^{3} & \sqrt{x^{2}+y^{2}+z^{2}}:[0, \infty)
\end{array}
$$

$$
\begin{gathered}
\frac{\text { functun }}{\text { (5) }: \frac{1}{x^{2}+y^{2}+z^{2}} \quad \frac{1}{n}: n \geq 0} \begin{array}{r}
\frac{1}{n}: \mathbb{1} \backslash\{0\} \\
x^{2}+y^{2}+z^{2}
\end{array} \mathbb{R}^{3} \quad \frac{1}{x^{2}+y^{2}+z^{2}}:(0, \infty) \\
(6) \times y \ln z \quad x: \mathbb{R} \\
y: \mathbb{R} \\
\ln z: z>0
\end{gathered}
$$

Limit. ($\$ 14.2$)
Def. $\vec{f}: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
\vec{F} is said to have a limit \vec{L}
as $\vec{x} \rightarrow \vec{a} \in \mathbb{R}^{n}$
If $\forall \varepsilon>0, \exists \delta>0$ s.t.
$\forall \vec{x} \in A$ and $0<\|\vec{x}-\vec{a}\|<\delta$,
$\left\|\vec{F}\left(\frac{b}{x}\right)-\vec{L}\right\|<\varepsilon$
In this case, we wite

$$
\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{L} .
$$

Meaning: If \vec{x} goes closer to \vec{a}, then $\vec{f}(\vec{x})$ goes closer to \vec{L}.
So "a limit does wt exist of \vec{a} " means When \vec{x} goes closer to \vec{a}, $\vec{f}(\vec{x})$ will not goes to any umber.
ie.
It there is tho paths approaching in, that the lints ave diltiweme on the two piths, than the limit doesn't exist as $\vec{x} \rightarrow \vec{a}$.
$Q 19)$

$$
\begin{aligned}
& \lim _{\substack{(x, y) \rightarrow(2,0) \\
2 x-y \neq 4}} \frac{\sqrt{2 x-y}-2}{2 x-y-4} \\
= & \lim _{\substack{(x, y) \rightarrow(2,0) \\
2 x-y \neq 4}} \frac{\sqrt{2 x-y}-2}{(\sqrt{2 x-y}+2)(\sqrt{2 x-y}-2)} \\
= & \lim _{\substack{(x, y) \rightarrow(2,0) \\
2 x-y} 4} \frac{1}{\sqrt{2 x-y}+2}=\frac{1}{4}
\end{aligned}
$$

$2 x-y \neq 4$ in lint mems the path chosen to approve (2,0) cannot cross the fin $2 x-y=4$
e.g. : blue limes me OK, red hes ane nut.

Q44) Show $\frac{x y}{|x y|}$ hers n limit at origin.
Choose two Paths to approach origin:

$$
\begin{aligned}
& C_{1}: x=y=t, t>0 \\
& C_{2}: \begin{array}{l}
x=-t \\
y=t
\end{array}, t>0 .
\end{aligned} \lim _{\substack{(x, y) \rightarrow(0,0) \\
\text { on } C_{1}}} \frac{x y \mid}{} \frac{t^{2}}{\left|t^{2}\right|}=1 .
$$

\therefore limit not exist.

Q 56)
Green :

$$
\begin{aligned}
& 2|x y|-\frac{x^{2} y^{2}}{6}<4-4 \cos \sqrt{|x y|}<2|x y| \\
& \text { Find } \lim _{(x, y) \rightarrow(0,0)} \frac{4-4 \cos \sqrt{|x y|}}{|x y|}
\end{aligned}
$$

For $\quad x y \neq 0$,

$$
\begin{aligned}
& \lim _{(x, y)-(0,-)} \frac{2|x y|-\frac{x^{2} y^{2}}{6}}{|x y|} \\
&= \lim _{(x, y) \rightarrow(0,0)} \frac{| | x y \left\lvert\,-\frac{|x y|^{2}}{6}\right.}{(x y \mid} \\
&= \lim _{(x, y) \rightarrow(0,0)} 2-\frac{|x y|}{6}=2 \\
& \lim _{(x, y \mid-(0,0)} \frac{2|x y|}{|x y|}=2
\end{aligned}
$$

\therefore Sandwich Thu

$$
\Rightarrow \lim _{(x, y) \rightarrow(0,0)} \frac{4-4 \cos \sqrt{|x y|}}{|x y|}=2 .
$$

Q65). Find, or show that linit doesn't exist:

$$
\begin{aligned}
& h_{(x, y) \rightarrow(0,0)} \tan ^{-1}\left(\frac{|x|+|y|}{x^{2}+y^{2}}\right) \\
& \tan ^{-1}: \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{aligned}
$$

Polar Coordimetes:

$$
\begin{aligned}
& x=r \cos \theta, y=r \sin \theta \\
& \quad(x, y) \rightarrow(u, v) \Leftrightarrow r \rightarrow 0
\end{aligned}
$$

\therefore Can be veduced to limit of 1 varlable.

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \tan -\left(\frac{|x|+|y|}{x^{2}+y^{2}}\right) \\
= & \lim _{r \rightarrow 0} \tan ^{-1}\left(\frac{|r \cos \theta|+|r \sin \theta|}{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta}\right) \\
= & \lim _{r \rightarrow 0} \tan ^{-1}\left(\frac{|\cos \theta|+|\sin \theta|}{|r|}\right)
\end{aligned}
$$

$$
\begin{aligned}
1 & \leq|\cos \theta|+|\sin \theta| \leq \sqrt{2}-(*) \\
\Rightarrow \tan ^{-1}\left(\frac{1}{|v|}\right) & \leq \tan ^{-1}\left(\frac{|\cos \theta|+|\sin \theta|}{|r|}\right) \leqslant \tan ^{-1}\left(\frac{\sqrt{2}}{|n|}\right) \\
r \rightarrow 0^{+} & \Rightarrow \frac{1}{\operatorname{r|}}, \frac{\sqrt{2}}{|n|} \rightarrow+\infty \\
& \Rightarrow \tan ^{-1}\left(\frac{1}{\ln \mid}\right), \tan ^{-1}\left(\frac{\sqrt{2}}{r n}\right) \rightarrow \frac{\pi}{2} \\
r \rightarrow 0^{-} & \Rightarrow \frac{1}{\operatorname{rn}}, \frac{\sqrt{2}}{|r|} \rightarrow+\infty \\
& \Rightarrow \tan ^{-1}\left(\frac{1}{|r|}\right), \tan ^{-1}\left(\frac{\sqrt{2}}{n \mid}\right) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

Sandwich Thm

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left(\frac{|\cos \theta|+|\sin \theta|}{|v|}\right) \rightarrow \frac{\pi}{2} \text { as } v \rightarrow 0 \\
& \therefore \operatorname{hin}_{(x, y) \rightarrow(0, y)} \tan ^{-1}\left(\frac{|x|+|y|}{x^{2}+y^{2}}\right)=\frac{\pi}{2}
\end{aligned}
$$

(*):

$$
\begin{aligned}
& (|\sin \theta|+|\cos \theta|)^{2} \\
= & \sin ^{2} \theta+\cos ^{2} \theta+2|\sin \theta \cos \theta| \\
= & 1+2|\sin \theta \cos \theta| \\
= & 1+\frac{|\sin 2 \theta|}{\epsilon[0,1]} \\
\therefore & 1 \leqslant\left(\frac{|\sin \theta|+|\cos \theta|)^{2} \leq 2}{a \mid \operatorname{sen} s \operatorname{posithe}}\right. \\
= & 1 \leqslant|\sin \theta|+|\cos \theta| \leqslant \sqrt{2}
\end{aligned}
$$

